

EXPERIENCE IN TESTING AND COMPARING DIFFERENT SOLUTIONS BASED ON ARTIFICIAL INTELLIGENCE FOR THE MOSCOW HEALTH SERVICE

Morozov S.P., Sergunova K.A., Vladzymyrskyy A.V., Klyashtornyy V.G., Andreychenko A.E., Kulberg N.S., Gombolevsky V.A.

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Department, Russia Yekaterinburg, 2019

>**75**%

≈30%

pharma distribution supply chain

management of patient medical information

medical image analysis

handling time-consuming nurses'responsibilities

Integration of AI into PACS and RIS

Источник: https://www.riveraintech.com/clearread-ct/

- 1. Conducting a diagnostic study
- 2. Processing the study by using of algorithm
- 3. Description of the study by a physician using the algorithm

Source: https://www.riveraintech.com/clearread-ct/

Impression: Abnormal study. Preliminary Findings : Pleural Effusion detected on the right.

Source: http://qure.ai/qxr.html

Artificial intelligence helps radiologist

The conclusion of radiologist: The mass in the root of right lung. CT in recommended

The conclusion of AI: No pathology (abnormality 7%).

The conclusion of radiologist: The pulmonary hypertension. No mass lesion was detected.

Patient was referred for an unnecessary CT scan:

- radiation dose of 19,6 mSv on CT;
- the cost of CT 1153 rubles according to the CHI;

How accurate is your AI?

Can we trust AI ?

Total product lifecycle and QA approach on AI workflow

Stages of clinical evaluation

https://arxiv.org/ftp/arxiv/papers/1908/1908.00381.pdf

Analytical validation

Criteria for the admission of AI to a preliminary test

yes

no

ves

no

yes no

yes

no

yes

no

yes

no

yes

no

yes

yes

no

Key criteria:

1. Approvals of FDA and / or CE certification

or

Actual implementations of the currently working software in medical centers &

Scientific articles (original research works) in Q1/Q2

2. Availability of tools for integration with PACS

Metrics of application in Moscow:

Diagnostic accuracy was tested on data that included Caucasoid and Mongoloid Races.

*Questionnaire for the admission of software based on "AI" / computer vision to a preliminary test operation

The results of companies selection

Directions in the project

Nº	Nosology	The number of studies in URIS	AI_3	AI_7	AI_8	AI_9	AI_11	AI_12	AI_14	AI_18	AI_19	AI_25
1	Lung cancer	250 000	V	V		V						
2	Breast cancer	400 000			V			V	V			
3	Lung pathology	16 000		V		V			V	V	V	
4	Tuberculosis	16 000		V		V			V		V	
5	Mass lesion in the adrenal glands	480 000										
6	Mass lesion in the liver	100 000	V							V		
7	Coronary calcification	250 000										V
8	Aortic aneurysm	510 000	V									
9	Paracardiac fat	250 000										
10	Dilation of the pulmonary trunk	250 000										
11	Multiple sclerosis	20 000					V			V		
12	Pulmonary emphysema	250 000										V
13	Fractures of limbs, skull	110 000	V								V	
14	Brain hemorrhages	78 000	V								V	
15	Changes in liver density	480 000										V
16	Vertebral fracture (osteoporosis)	592 000										V
17	Intervertebral disc disease: herniation	124 000		V								

1st place

2nd place

Unified Radiological Information Service (URIS)

9

0

0

毛

816

25

51

1067

26

57

A large number of studies, devices of different manufacturers, as well as the presence of URIS allows to ensure the fulfillment of three main criteria:

- diagnostic cohort design
- the inclusion of multiple institutions
- prospective data collection for external validation

Ο

0

Volume of Datasets

Data labeling

Examples with low AUC

50% : 50%

Test iteration	Processing speed, sec.	AUC for assessment the choice "In the study foci presents / no foci			
Target value for T3	35	0,9			
Experiment	67	0,8			
Experiment (in 3 months)	35	0,7			
Working check 1	-	0,82			
Working check 2	-	0,64			
Working check 3	-	0,85			

RESULT: AI solution is applicable only for mass routine health screening in populations with a low pretest probability of pathology presence, which is confirmed by the meaning of the prognostic value of the negative result (97,5%).

Results

Sensitivity	0,817 (0,696; 0,905)
Specificity	0,925 (0,796; 0,984)
Accuracy (overall validity)	0,860 (0,776; 0,921)
Likelihood ratio of a positive test	10,9 (3,4;56,6)
Likelihood ratio of a negative test	0,20 (0,10; 0,38)
Predictive value of a positive result	0,942 (0,841; 0,988)
Predictive value of a negative result	0,771 (0,627; 0,880)

Evaluation
<0.6 – unsuitable
0.61 - 0.8 – revision required
> 0.81 – admissible for clinical validation

The next stage: to conduct prospective studies on the basis of medical organizations of the Moscow Health Department.

The obtained data confirms the necessity to standardize methodology of testing different solution based on AI

Technical committee 164 "Artificial Intelligence"

The order of Federal Agency on Technical Regulation and Metrology of July 25, 2019 №1732 «About creation of technical Committee on standardization of «Artificial intelligence»

Technical committee 164 "Artificial Intelligence" (2019)	Working subgroup	
WG 01 "Foundational standards"		
WG 02 "Big Data"		
WG 03 "Trustworthiness"		
WG 04 "Use cases and applications"	Al in Medicine	
WG 05 «Al in education»		

......

2

RADIOLOGY MOSCOW

- participates in the activities of artificial intelligence TC 164
- supervises the subgroup of artificial intelligence in health care, which plans to develop standards devoted to clinical and technical trials.

Kristina Sergunova,

Head of Technical Monitoring and Quality Assurance Development Department

<u>sergunova@npcmr.ru</u> +7 (905) 570-15-28

Thank you for your attention!